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Modeling and Simulation of Hepatic Drug Disposition Using a Physiologically
Based, Multi-agent In Silico Liver
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Purpose. Validate a physiologically based, mechanistic, in silico liver (ISL) for studying the hepatic
disposition and metabolism of antipyrine, atenolol, labetalol, diltiazem, and sucrose administered alone
or in combination.
Materials and Methods. Autonomous software objects representing hepatic components such as
metabolic enzymes, cells, and microarchitectural details were plugged together to form a functioning
liver analogue. Microarchitecture features were represented separately from drug metabolizing functions.
Each ISL component interacts uniquely with mobile objects. Outflow profiles were recorded and
compared to wet-lab data. A single ISL structure was selected, parameterized, and held constant for all
compounds. Parameters sensitive to drug-specific physicochemical properties were tuned so that ISL
outflow profiles matched in situ outflow profiles.
Results. ISL simulations were validated separately and together against in situ data and prior
physiologically based pharmacokinetic (PBPK) predictions. The consequences of ISL parameter changes
on outflow profiles were explored. Selected changes altered outflow profiles in ways consistent with
knowledge of hepatic anatomy and physiology and drug physicochemical properties.
Conclusions. A synthetic, agent-oriented in silico liver has been developed and successfully validated,
enabling us to posit that static and dynamic ISL mechanistic details, although abstract, map realistically to
hepatic mechanistic details in PBPK simulations.

KEY WORDS: agent-based; complex systems; discrete event; liver; mechanistic; modeling;
physiologically based; predict; simulation.

INTRODUCTION

The vision of physiologically based (PB) pharmacokinetic
(PK) modeling (1) is to provide a mechanistic and more
realistic description of the behavior of substances in various
tissues, with the intent of addressing such questions as: “Why
do we see the observed behavior? Can we explain differences

among compounds?” How do we better anticipate pharma-
cokinetics in patients, when a compound is administered
alone or with other drugs “from in vitro and preclinical
information?” How can we “provide increasingly confident
predictions of events occurring with drugs at target and other
sites ... with age, in disease?” For that vision to be achieved,
we need “realistic yet more complex models that take into
account such factors as the various physical spaces within
tissues, the existence of permeability barriers, organ hetero-
geneity, and active transport or metabolic processes,” (1) all
within a reliable and easily reused simulation framework.
Progress has not yet been sufficient to enable answering these
questions today. Consequently, expediting achievement of
that vision was a factor motivating development of the
recently described in silico liver (ISL) (2). It is an example
of a (new) class of synthetic, discrete, componentized,
physiologically based, computational, analogue models that
are intended for refining, exploring, and testing hypotheses
about interacting mechanisms that influence the transport,
metabolism, and hepatic disposition of compounds of interest.
It is intended for unraveling the complexity of the interacting
features of hepatic disposition defined by simulation of events
occurring within the PBPK context, but using a precise
representation of the hepatic architecture, biochemistry and
physiology. In contrast, classical PBPK models, as exemplified
in (3–8), make parsimony paramount. By emphasizing
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identifiability and certainty of parameters obtained by
nonlinear regression, they emphasize describing PK data in
terms of the simplest global representation of physiological
events. Once that has been done satisfactorily, interest turns
logically to the problem of gaining a better understanding of
the detailed mechanisms underlying the data. Historically, the
only practical approach was to adapt analytical modeling
methods and use equations to represent posited mechanistic
details. Traditional PBPK models are an example of that
approach. The approach, however, encounters obstacles
when there is incomplete knowledge about the mechanistic
details. Coincident with advances in object-oriented pro-
gramming, it became feasible to focus directly on mechanisms
by asking, what mechanisms can I build from software
components (objects) that when measured in some way will
yield data comparable to my referent data? The model that
results from such building and validation is not inductive: it
is synthetic.

Other key features of the similarities and differences
between traditional, induced, PK models and synthetic
models of the ISL type have been detailed under Supple-
mentary Material ESM in (2) and in (9) and (10). It becomes
clear that the two model classes have different goals and uses.
If future ISL models become more predictive, it will be
because they are more realistic and thus more complicated. In
contrast, PBPK models defined using nonlinear regression
tend to be more robust because the fewest number of
parameters possible are used, recognizing that for induced,
mathematical models, each additional parameter adds to
model uncertainty and may compromise predictive power.
For models of the ISL class, the following has been a working
hypothesis. Through the combined use of discrete and
synthetic methods to more realistically represent underlying
3D morphology and microevents, computational scientists
will be able to better predict the PK consequence of changes
in drug structure or pathology, for example, by using
validated simulations like the ISL, as distinct from the more
conventional PBPK regression approaches. Although this
report is an important step toward that end, further research
will be needed to support that working hypothesis.

Within this first generation of ISL, hepatic form and
function are disjoined: different, autonomous components
represent them separately at several levels. This disjunction
does not occur in reality and that issue will be addressed in
later ISL generations. Computational efficiency in this first
generation is facilitated by having aspects of hepatic micro-
architecture represented independently by components (the
agents and functional objects described under “MATERIALS
AND METHODS”), rather than equations, arranged to
represent spatial organization of function. Further, each ISL
component can interact uniquely with mobile objects repre-
senting drugs and other compounds of interest. Indeed, a
variety of different mobile objects can be studied, simulta-
neously or separately. The consequences of interactions
between simulated drugs and spatially confined components,
controlled by known or hypothesized component-specific
principles, can be measured and studied analogous to wet-
lab experiments. The resulting data can be compared with (as
distinct from being fit to) in vitro and in situ data to refine the
ISL and help clarify posited, causal linkages thought to
underlie hepatic disposition phenomena.

Research on this class of models is motivated by
achieving three broad goals. 1) Experimentation with such
models will help unravel complex pharmacokinetic processes.
2) Future device components can be reused and “educated,”
for example, as in (1) and (11), to use the physicochemical
properties (PCPs) of new compounds as input to generate
expected hepatic disposition data that can be mapped to the
species of interest. 3) With progress on 1) and 2), expected
hepatic disposition and drug metabolism properties for sets of
new compounds can be explored in advance of costly wet-lab
experiments or clinical trials, potentially saving considerable
time. Achieving these capabilities will require pushing mod-
eling and simulation capabilities such that we can methodically
capture more multi-scale knowledge within models.

To what extent can different ISLs overcome limitations
encountered by traditional PBPK models? Exactly what is
needed to move toward the above expectations? Hunt et al.
(2) suggested that the following may be possible. 1) Having
specified an ISL, separately parameterize and hold constant
its key microarchitectural features. 2) Dose with simulated
counterparts of each of several previously studied com-
pounds. 3) Enable the ISL to distinguish among the different
simulated compounds. 4) Adjust only PCP-sensitive, ISL
parameters so that the in silico disposition properties of the
simulated compounds—dosed alone or in combination—
match the known properties of those compounds reasonably
well so that a similarity criterion is met.

In this work, we apply the ISL to describe the isolated
perfused rat liver systems, in an attempt to advance on
traditional models that have been used to evaluate hepatic
drug disposition and clearance (3–8). Recognizing that cationic
drugs account for 70 to 80% of all drugs (12), we simulated the
hepatic disposition and metabolism of four cationic com-
pounds, atenolol, antipyrine, labetalol, and diltiazem, along
with the co-administered, neutral extravascular marker su-
crose. We verified that the ISL could generate in silico
experimental results that were indistinguishable from those
measured during in situ experiments. We followed an iterative
ISL refinement procedure that led to a single core ISL
structure parameterization that could be used for all five
compounds. Only the parameter values of PCP-sensitive, ISL
components that interact differently with different compounds
were tuned to give good compound-specific results. Monte
Carlo variants of the resulting ISLs were used to simulate
outflow profiles for all five compounds, alone or in combina-
tion. The results provide additional ISL validation evidence.

Because of the non-deterministic nature of the ISL, the
consequences of PCP-sensitive, parameter changes are nei-
ther unique nor simple. The consequences of changing four,
PCP-sensitive, probabilistic parameter values are presented
and discussed to illustrate specifically how a change in PCPs
can be expected to alter ISL behavior. Two consider changes
in the probability of simulated drug moving between sinu-
soidal spaces, the third reflects on changing the probability of
simulated intracellular binding, and the forth deals with
changing the probability of a metabolic event. Based on that
validation, we hypothesize that static and dynamic ISL
mechanistic details, although abstract, map realistically to
hepatic mechanistic details. The results represent an impor-
tant advance in the science and methods of PBPK modeling
and simulation.
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MATERIALS AND METHODS

To clearly distinguish in silico components and processes
from corresponding hepatic structures and processes, we use
SMALL CAPS when referring to the in silico counterparts.

ISL Structure and Design

ISL structure is illustrated in Figs. 1 and 2 and detailed in
Hunt et al. (2). For convenience, an abridged description is
provided along with a brief rationale for ISL component
design. Where most useful, we contrast the ISL with
conventional PK models. See (2) and its Supplemental
Material ESM, along with (9) and (10) for additional dis-
cussion of design considerations and contrasts. The ISL is an
abstract, physiologically based representation of a hepatic
lobule. It is not intended to duplicate a liver, detail-for-detail.
An operating guideline has been that if results of in silico
experiments reasonably match wet-lab counterparts over a
variety of experiments, then the in silico mechanistic details
may map to corresponding in vivo or in situ details in

informative ways. ISL components mimic essential form and
function features of the in situ perfused rat liver system (13)
used to study the hepatic disposition of sucrose, antipyrine,
atenolol, labetalol, and diltiazem, the compounds on which
this report focuses. In (5), the portal vein was cannulated to
enable single pass perfusion; perfusate was collected using a
fraction collector. The fraction of the administered dose
contained per unit of collected perfusate was measured. ISL
experiments follow the same protocol (5).

The liver is composed of secondary units, which are
composed of several lobules. We assume that lobules are
similar throughout the liver and within secondary units. Our
task thus reduces to simulating a large collection of lobules.
Blood flows through the lobules via sinusoids, which provide
access to hepatocytes. Blood enters lobules through portal
vein tracts (PV) and vascular septa, and drains into branches
of a common central vein (CV) (14). The acinar flow patterns

Fig. 1. Illustrations of hepatic lobular structures and their represen-
tation within the ISL. A A schematic of a cross-section of a hepatic
lobule showing the direction of flow from the terminal protal vein
tracts (PV) through sinusoids in three concentric zones to the central
hepatic vein (CV). Different zones have quantitative differences in
structural characteristics and enzyme levels. B A portion of the
sinusoid network is represented by an interconnected, three zone,
directed graph. Data from the literature are used to constrain the
graph size and structure. SS Sinusoidal segment.

Fig. 2. Illustrations of two key ISL components. A A schematic of a
sinusoidal segment (SS): one SS occupies each node specified by the
directed graph (Fig. 3). Grids represent spaces and can contain objects
representing the functions associated with a portion of sinusoids.
Objects representing DRUG and SUCROSE enter and exit via the Core
and Grid A. From Grid A, they can access the other spaces. Grid
locations have properties that govern their interaction with mobile
COMPOUNDS. Different shadings of Grid A illustrate the potential for
representing heterogeneous properties. Objects functioning as contain-
ers (for other objects) are used to represent cells, and can be assigned
to any grid location. The Core represents blood flow; Grid A (referred
to as Rim Space) represents the sinusoid rim; Grid B (referred to as the
Endothelial Layer) represents endothelial cells and fenestra; Grid C
(referred to as the Space of Disse and Hepatocyte Layer) represents all
other spaces, including hepatocytes. B A HEPATOCYTE container:
objects representing all needed intracellular components can be placed
within. Only two types of intracellular BINDERS recognize drug: those
that simply bind (b) and those that represent enzymes (e) and can
metabolize. Cell containers will not allow SUCROSE to enter. Bile was
not needed for these simulations but can easily be represented as a
extension as described in (2).
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within a lobule are represented in the ISL by a directed
graph (Fig. 1), which abstractly mimics these flow paths. To
illustrate, a flow path from PV to CV can be divided into
three segments and represented by a directed graph: PV to
node 1, node 1 to node 2, and node 2 to CV. Following that
method, hepatic function is represented within the segments.
ISL graph edges represent flow connections between the
graph nodes, called Sinusoidal Segments (SSs). Because
traditional PK models have focused primarily on the PK data
and its structure, information about paths and their inter-
connections has been abstracted away. Such abstractions are
adequate when the primary use is systemic prediction for
which those details are not needed.

Representing Sinusoidal Details

The usage and aspect focus taken on hepatic sinusoidal
function dictates the simplest 3D ISL component representa-
tion for a SS. Our primary use has been to match current and
future hepatic outflow profiles for many drugs using just one,
basic ISL structure. The interesting aspects are those that
interact with administered compounds moving through sinu-
soids. Starting simple, we used exploratory modeling proto-
cols to assess the suitability of a variety of component
structures. The first effective structure is shown in Fig. 2A.
A SS represents a unit of sinusoid function, along with its
related spatial features. The design and construction validates
against the considerable body of qualitative, histological data
available in the literature. A SS is a discretized, tube-like
structure comprised of a blood “Core” surrounded by three
identically sized 2D grids, which together constitute a 3D
structure. A more realistic 3D grid is not yet justified and
tracking and managing events occurring in concentric 2D
grids is computationally simpler than in 3D grids.

Grid A represents sinusoid edges near endothelial cells.
Grid B is wrapped around Grid A to represent the
endothelial layer. The parameter ECDensity controls the size
and prevalence of FENETRATIONS within Grid B: in this report,
20% is randomly assigned to FENESTRA, and the remaining
space is assigned to CELLS. Grid C is wrapped around Grid B;
it represents the Space of Dissé and hepatocytes. They are
separate in the liver. Here we represent the Space of Dissé
and hepatocytes using one, rather than two spaces. Two can
be used. However, during the exploratory modeling referred
to above, it became clear that conflating their representation
into one space, one grid, would provide model detail that was
adequate to achieve project goals. The parameter HepDensity
controls the relative fraction of Grid C assigned to HEPATO-

CYTES. We specify two SS classes: S1 and S2. Compared to a
S2, a S1 has a shorter internal path length and a smaller
surface-to-volume ratio. We found that it was essential to
have sufficient variety of effective SS lengths and diameters.
There are several ways to provide that variety. Using two
classes of SS was the first strategy that was successful. The
merits of alternative, possibly simpler strategies are being
explored. As described in Table S1, SS length is given by
a random draw from a modified gamma distribution
having a parameter-specified mean and variance. We used
that distribution because drawing from a uniform distribu-
tion failed. The same proved true for normal and
unmodified gamma distributions.

Interconnecting Sinusoids

The blood supply for one lobule feeds into several
sinusoids that merge in stages to only a small fraction of their
original number as blood is fed into the lobule’s outgoing CV.
Interconnections between sinusoids are frequent in the
periportal region but are not seen near the CV. The ISL’s
graph structure reflects that arrangement. Miller et al. (15)
and Gumucio et al. (16) subdivide the lobule interior into
three concentric zones to distinguish the quantitative differ-
ence in structural characteristics and enzyme levels among
different zones. Figure 1 illustrates that we do the same. The
resulting directed graph maps to a portion of a lobule’s
sinusoidal network and to half an acinus. In the ISL, each
zone contains at least one node. There are three graph
structure parameters: 1) number of nodes, 2) number of
intra-zone connections, and 3) number of inter-zone con-
nections. Graph connectivity (assignment of edges to nodes)
is randomly specified for each simulation to emulate intra-
hepatic lobule variability and uncertainty about sinusoidal
fine structure. Consequently, each is unique. The number of
nodes per zone is always in the order Zone 1 > Zone 2 >
Zone 3. As specified in Table I, there are more intercon-
nections between Zone 1 nodes than between Zone 2 nodes.
There are no interconnections between Zone 3 nodes. Figure 3
shows an example of a LOBULE graph structure that was used
for one simulation run. In (2), we used available literature
observations to narrow the variety and range of stochastically
allowed graph structures.

For the intended uses, the ISL has what we believe is a
minimum set of hepatic features. It is designed to enable new
features and functions to be easily added (or removed)
without interfering with the function of the existing compo-
nents and features. It is designed to be reused. Structural and
spatial parameterizations that have been validated for one set
of drugs can be held constant while drug-specific parameters
are tuned to match data for additional sets of drugs.

Compounds as Unique Objects

ISL parameters are grouped into three categories: 1)
those that control LOBULE graph and 2) sinusoid structures,
and 3) those that reflect the influence of the physicochemical
properties (PCPs) of mobile compounds. For convenience,
the parameters in the latter are segregated into three groups:
those for which compound’s (a) molecular weight (MW) and
size, (b) partition coefficient (logPapp), and (c) unbound
fraction are thought to exert a strong influence. Table I lists
the ISL parameter names, descriptions, and values. Addi-
tional detail is available in Supplementary Material.

The COMPOUNDS studied are in silico analogues of
sucrose, a neutral extracellular space maker, and four cationic
drugs: antipyrine, atenolol, labetalol, and diltiazem. The wet-
lab outflow profiles against which simulations have been
validated are reported in (5). Each compound is represented
using objects that move through the LOBULE and interact with
each SS feature encountered. A typical COMPOUND represents
many drug molecules: the value and the mapping to wetlab
data is controlled by the parameter ISL2WetLabScaling. A
COMPOUND’S behavior is determined by the PCPs of its
referent, along with the LOBULE and SS features encountered
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during its unique trek from PV to CV. During a simulation
cycle, an encountered component “reads” the information
carried by a COMPOUND and then uses it to customize its
response, in compliance with its parameter values, following
some pre-specified or learned logic (11). For example, a CELL

detects a COMPOUND in an adjacent space and “reads” that
Papp=0 (because it is SUCROSE). It therefore does not allow
that object to enter. The dosage function simulates the effects
of catheters and large vessels; Hung et al. (5) used an inverse
Gaussian function for this purpose; we used a modified
gamma function.

COMPOUNDS enter the lobule via the PV. After that, they
enter a SS in Zone 1 at either the Core or Grid A. Simulated

flow occurs only in the Core. The parameter SinusoidTurbo,
which represents flow turbulence, biases COMPOUND move-
ment in the three spaces in the CV direction. Until being
collected at the CV, each COMPOUND has several stochastic
options. In the Core or Grid A, a COMPOUND can move within
either space, jump to an adjacent space, or exit the SS. Within
Grid B, it has three options: move within that space, jump
back to the Grid A, or on to Grid C. All COMPOUNDS can move
within the EXTRACELLULAR portions of Grids B and C. A DRUG

but not SUCROSE can move into CELLS in either Grid B or C. A
COMPOUND can exit a SS only from Grid A or the Core. After a
COMPOUND exits a SS in Zone 3, it enters the CV: its arrival is
recorded, simulating being collected by a fraction collector.

Table I. ISL Parameters, Descriptions, and Values

Category Name Description Valuea

Lobule Graph GraphSpecFile Node in Zone I 45

Node in Zone 2 21

Node in Zone 3 6

Intra-Zone I edges 18

Intra-Zone II edges 10

Intra-Zone III edges 0

Zone I Y Zone II edges 15

Zone I Y Zone III edges 0

Zone II Y Zone III edges 8

Sinusoid Structure

Parameters

DirSinRatio Percentage of SS that are type S1 (direct) 0.75

TortSinRatio Percentage of SS that are type S2 (tortuous) 0.25

DirSinCircMin Upper and lower bounds of the SS circumference,

generated by a pseudo-random number using the

uniform distribution

50

DirSinCircMax 50

TortSinCircMin 4

TortSinCircMax 4

DirSinLenAlpha Length of SS, generated by a modified Gamma distribution;

the modification consists of a leftright shift of the distribution,

allowing the user to clip off the front of the distribution

3.0

DirSinLenBeta 0.215

DirSinLenShift 0

TortSinLenAlpha 10

TortSinLenBeta 0.125

TortSinLenShift –40

ECDensity Relative ENDOTHELIAL CELL density within Grid B 0.8

HepDensity Relative HEPATOCYTES density within Grid C 0.6

Parameters influenced

by MW

SinusoidTurbo The complement of the amount of turbulence allowed in SS 0.3

CoreFlowRate The number spaces moved forward within the SS core

during each step

2

ISL2WetLabScalingb Provides the precise validation mapping from ISL output to the

wet-lab (IPRL) output fraction

7

Parameters influenced

by logPapp

A2BJumpProb Probability that a COMPOUND will jump from Grid A to Grid B

when given the option

0.1

B2AJumpProb As above: from Grid B to Grid A 0.6

B2CJumpProb As above: from Grid B to Grid C 0.35

C2BJumpProb As above: from Grid C to Grid B 0.65

Parameters influenced by

protein binding

BindersPerCellMin Min and max for the number of binding agents inside each CELL. 5

BindersPerCellMax Simple BINDERS for ECS and ENZYMES for HEPATOCYTES. 10

MetabolizeProb Probability that an ENZYME will metabolize a SOLUTE 0.4

SoluteBindingProb Probability a SOLUTE will be bound when contact a BINDER 0.5

SoluteBindingCycle Number of cycles a BINDER will bind a SOLUTE 25

a Parameter values when SUCROSE and ANTIPYRINE were dosed in combination.
b In (2), ISL2WetLabScaling is called SoluteScale.
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Representing Cells and Subcellular Components

An unspecified number of cells are represented by objects
(called CELLS) in Grids B and C: they function as containers for
other objects. A grid location and its container are the limit of
spatial resolution. At the start of each simulation, CELLS are
placed randomly at some fraction of the available grid
locations. A HEPATOCYTE is illustrated in Fig. 2B. In this report,
each CELL contains a randomly specified number of BINDERS in
a well-stirred space. No additional detail was needed for
validation. The objects within CELLS are below that level, but
that condition too can be easily changed when needed.

BINDERS are the INTRACELLULAR components that repre-
sent transporters, enzymes, and other cellular material that binds
or sequesters drug molecules. A binder within a Grid B CELL

can only bind and later release a DRUG. A binder within a
Grid C HEPATOCYTE is called an ENZYME because it can bind
DRUG and either release or METABOLIZE it. As done in (17) and
(18), an ENZYME can be designed to bind more than one DRUG

object. Additional objects or agents can be specified and
added as needed without compromising either ISL function
or the function of objects already present. Because of the
stochastic nature of ISL simulations, each in silico experiment
generates a slightly different outflow profile. Typically, a single
experiment is comprised of 48 trials that were averaged to
represent a referent outflow profile. Because we used an 8-
node computer cluster (see below), it was convenient to run a
number of experiments that was divisible by eight. Forty
experiments proved to be too few and 56 were unnecessary.
Results of the 48 experiments were averaged to represent a
referent outflow profile.

Drug partitioning into cells was simulated as follows. If a
COMPOUND is adjacent to a CELL container and all other grid
points around the COMPOUND are empty, then (when
SinusoidTurbo=0) there is an equal probability of it moving in
any of the available directions. There is a 1-in-11 chance that it
will try to move to the CELL’S location. If the solute decides to
move to that location and the parameter isMembraneCrossing is
true, because Papp≠0, then the COMPOUND enters the CELL.
As more COMPOUNDS are successfully simulated using future
ISLs, we expect to assign a probability to CELL entry when
isMembraneCrossing is true.

Similarity Measure

Due to differences between rats and among experimental
details, no two liver perfusion outflow profiles are identical.
Assuming that experimental, quality control measures are
met, there are no specific metrics for deciding when the next
in situ outflow profile is sufficiently similar to those already
completed to be classified as a repeat experiment. Typically,
the decision is made by the researcher based on inspection of
the data, guided by experience. Ideally, an ISL outflow profile
should be indistinguishable from the wet-lab profile of an
acceptable repeat experiment, as judged by an expert (this
characteristic is one of ten, targeted ISL design capabilities
listed in Supplementary Material ESM). Whereas the preci-
sion simulation output of an inductive, mathematical model
can be precisely fit to certain selected referent data, the
output of an ISL experiment cannot, because it mimics the
referent, in situ experiments, where results vary among repeat
experiments. It can, however, be quantitatively compared. We

Fig. 3. A sample ISL lobule graph structure generated for one simulation run. All Zone 1 nodes (gray squares) have one incoming edge from
the PV. They have one outgoing edge; it can be connected to another SS or to the CV. Zone 2 nodes (unfilled squares) have an edge incoming
from a Zone 1 SS; the outgoing edge can be connected to a SS in Zone 2 or 3. Zone 3 nodes (black diamonds) have one incoming edge from a
Zone 2 SS; the outgoing edge is connected to the CV. The seven, light gray, unfilled squares represent Zone 2 nodes that, by chance, were not
assigned an incoming edge. Asterisk As drawn, these Zone 1 nodes look identical. However, the SS placed at each such apparently identical
node is different: they can be either S1 or S2; within both types, size and other details can be different. When needed, a parallel, mirror image
graph structure can be added to represent biliary excretion.
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attempted to capture key features of expert opinion in a
quantitative Similarity Measure (SM). It compares in silico
with the referent outflow profiles as detailed in (2). Briefly,
we assumed that the coefficients of variation of repeat
observations (referent) are constant. For each referent
outflow profile measure P, we create two curves, Pl=P(1−d)
and Pu=P(1+d). They were the lower and upper bounds of a
band around P. Here, d is the standard deviation of the
relative differences between each of six replicate in situ
experiments and the mean value for a given collection
interval, pooled over all collection intervals. An ISL outflow
profile was deemed similar to the referent if 80% or more of
ISL outflow values were within the band (SM≥0.8).

Parameter Tuning

There are thirty-seven ISL parameters. Several represent
hepatic structures that are not influenced by the PCPs of a
referent compound. A major simulation task has been to
locate a region of ISL parameter space that can provide
parameter vectors that generate biologically realistic outflow
profiles that meet the SM criteria for sucrose and the co-
administered referent drug. Because SUCROSE is a marker for
accessible extracellular spaces, we focused on it first. We
tuned the LOBULE graph and SS structure parameter values so
that the referent sucrose outflow profiles met the minimum
SM value. We then held those values constant and focused on
antipyrine, the least lipophilic of the four drugs. We assumed
that when co-injected, the initial appearance of sucrose and
antipyrine would be similar (within 1 second of each other).
When needed, a small lag-time was used to make that
adjustment for each of the referent drugs. We tuned the
PCP-sensitive parameters, including parameterizations of all
intracellular objects, to improve SM values. We then con-
tinued the iterative tuning process to obtain a single ISL from
which acceptable outflow profiles would be obtained follow-
ing administration of any combination of SUCROSE, ATENOLOL,
ANTIPYRINE, LABETALOL, and DILTIAZEM.

Consequences of Parameter Changes

In most cases, a change in an outflow profile caused by
altering the value of one parameter can be compensated by
adjusting a small set of other parameter values. As part of the
verification process, it was important to demonstrate that a
change in a COMPOUND’S parameter value produced the type
of outflow profile alteration that would be expected based on
knowledge of hepatic anatomy and drug disposition. With
that in mind, we undertook a series of experiments that
focused on four, PCP-sensitive, ISL parameters, two that
control a COMPOUND’S stochastic movement between grid
spaces and the two that control INTRACELLULAR binding and
METABOLISM. A change in any of these four values could map
to a relative change in a specific hepatic feature resulting
from different genetics, differences between individuals, or
the consequences of certain hepatic diseases; or it could map
to differences in PCPs.

The parameter A2BJumpProb specifies the probability
that, within each simulation cycle, a COMPOUND will jump
from Grid A to Grid B, simulating moving from the sinusoid
edge to the endothelial surface. When its value is smaller, the

COMPOUND spends less time in Grids B and C, and is more
likely to reach the CV sooner. A decrease in A2BJumpProb
might be expected to map to increased binding to red cells or
an increase in the fraction ionized, for example. B2CJumpProb
specifies the probability that a COMPOUND will jump from Grid
B to Grid C, simulating moving from the endothelial layer to
the space of Dissé and hepatocytes. When its value is large,
more compounds will move to Grid C. The net result will be
that COMPOUNDS tend to spend relatively more time wandering
around within Grid C. A larger value might be expected to
map to an increased Papp, for example. The parameter
SoluteBindingProb specifies the probability that, within each
simulation cycle, an unoccupied BINDER within a CELL will bind
a free COMPOUND within that same CELL. A smaller value
might be expected to map to a decrease in the fraction of
drug that is ionized, for example, or to fewer hydrogen bond
donor groups. The parameter MetabolizeProb specifies the
probability that a bound COMPOUND within HEPATOCYTE will
METABOLIZE it rather than simply releasing it. Consider a
COMPOUND that is bound to a binder object at the start of a
simulation cycle (t1) and remains bound at the end of that
simulation cycle (t2). Because simulation events within the
simulation cycle are not resolved, that scenario can represent
several referent scenarios, including a drug being bound to
one cell component at t1, becoming free, and then being
bound by another cell component at t2. A larger value for
another drug might be expected to map to increased enzyme
affinity, for example, or increased relative abundance of the
specific enzyme responsible for metabolism.

Hardware

The experiments were executed on an eight-node
OSCAR cluster (oscar.openclustergroup.org/) running Red-
Hat’s Fedora 5. The distribution of the runs uses MPICH
1.2.7 (www-unix.mcs.anl.gov/mpi/mpich1/). The ISL was
compiled using GCC 4.1.1 against the Swarm 2.2.3 Objec-
tive-C libraries (swarm.org/wiki/Main_Page). Each experi-
ment consisted of 48 Monte-Carlo runs with the initial
pseudo-random number seed extracted from the machine's
clock. The fraction of dose flowing out of the LOBULE was
averaged over all runs. The Smodulus_smoothing function
from the Rwave (version 1.22) package for R was used to
smooth post-peak data using a wavelet window of two or
three observations.

RESULTS

Outflow Profiles for Four Cationic Drugs plus Sucrose

In the following experiments, DRUGS are always co-
administrated with the same amount of SUCROSE. Following
are the parameterization processes. Table II lists PCPs. The
profile change induced by a modest change in one of the
parameters can be reasonably compensated by adjustments in
one or more of the other parameters. IncreasingA2BJumpProb
(Grid A→B) or decreasing B2AJumpProb (Grid B→A), for
example, can reduce the peak height of an outflow profile,
because more COMPOUNDS stay in Grid B: the rate of return of
COMPOUNDS to Grid A and Core are reduced. Such change has
been used to guide parameter tuning.
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We tuned the parameter values for each of the four
DRUGS, as described above, until minimally acceptable SM
values for the DRUG and co-administrated SUCROSE were
achieved (e.g., SM≥0.5). Separately, we iteratively improved
the SM values for each of the DRUGS and co-administered
SUCROSE. We choose the best LOBULE parameterization for
each, four total, for the next stage of improvement. Keeping
each LOBULE parameterization constant, we adjusted the
remaining parameters to obtain an improved SM value
(SM≥0.7). We then picked one LOBULE parameterization
and held it constant while iteratively searching the PCP-
influenced parameter space. This iterative process resulted in
the LOBULE and SS structures for all four DRUGS specified
in Table I. Acceptable outflow profile matches for each of the
four DRUGS along with co-administrated SUCROSE are shown
in Figs. 4 and 5. The corresponding parameter values for
drug-specific physicochemical parameters and SM values are
listed in Table II.

Because the molecular weight of diltiazem is much larger
than that of the other three drugs, we found it convenient to
set its ISL2WetLabScaling parameter value to 1. Because
ATENOLOL and ANTIPYRINE have similar molecular weights,
we used ISL2WetLabScaling=7 for each—the value used for
SUCROSE, and used ISL2WetLabScaling=6 for LABETALOL, which
has slightly higher molecular weight compared to ATENOLOL

and ANTIPYRINE.
DILTIAZEM had the lowest MetabolizeProb (0.02 com-

pared to 0.3–0.4 for the other three drugs), even though
diltiazem is described in the literature being a high clearance
drug. Because of DILTIAZEM’S large value of A2BJumpProb
(0.9) and small value of C2BJumpProb (0.2), DILTIAZEM

spent relatively more time in Grid C. Consequently, metab-
olism was extensive even though MetablizeProb was low. The
high A2BJumpProb and low C2BJumpProb parameter set-
tings map to diltiazem’s physicochemical property of high
lipophilicity.

Consequences of Changing DRUG-Specific Parameter Values

To study how systematic changes in the values of certain
PCP-sensitive parameters influenced outflow profiles, we con-
ducted numerous experiments focused on assessing the con-
sequences of parameter changes. We used LABETALOL as the
test DRUG because its outflow profile properties were some-
what centric of the four DRUGS. All ISL structural parameter
values were unchanged from values listed in Table I. In each
experiment, LABETALOL was co-administrated with an equal
amount of SUCROSE. For each changed parameter setting, we
calculated the ratio of the area under the LABETALOL outflow
curve (over 100 simulated seconds) to the area under the curve
following the parameter change: this ratio provided a relative,
single value measure of the consequences of the change; we
refer to the value as Area Ratio.

The first set of experiments studied the four space-jump-
probability parameters, A2BJumpProb, B2AJumpProb,
B2CJumpProb, and C2BjumpPrpb (for LABETALOL in Fig. 4C
it was 0.35, 0.2, 0.5, and 0.5, respectively). For each, we ran sets
of simulations for eight parameter values ranging from 0.05 to
1.0. The results showed a consistent trend of either increased
or decreased outflow profiles with increasing parameter values.
Increasing A2BJumpProb or decreasing B2AJumpProb had a
similar influence on LABETALOL’S outflow profile: the peak
decreased. Figure 6A shows results for two A2BJumpProb
parameter values. For A2BJumpProb=0.05, Area Ratio=2.5,
whereas for A2BJumpProb=0.95, Area Ratio=0.54. The
results were consistent with expectations for ISL structures
and functions. Increasing A2BJumpProb (or decreasing
B2AJumpProb) caused more COMPOUNDS to move into (or
less out of) Grid B; from there, more moved into Grid C and
that enabled increased METABOLISM.

Increasing B2CJumpProb or decreasing C2BJumpProb
had similar influences on LABETALOL’S outflow profile: the tail
end of the profile was lowered. Figure 6B shows results for

Table II. DRUG-Specific ISL Parameter Values

Category Parameter Atenolol Antipyrine Labetalol Diltiazem

Parameters influenced by MW CoreFlowRate 2 2 2 2

ISL2WetLabScaling 7a 7 6 1

Parameters influenced by logPapp A2BJumpProb 0.1 0.1 0.35 0.9

B2AJumpProb 0.6 0.6 0.2 0.2b

B2CJumpProb 0.3 0.35 0.5 0.5

C2BJumpProb 0.6 0.65 0.5 0.2

Parameters influenced by fraction unbound BindersPerCellMin 5 5 5 10

BindersPerCellMax 10 10 10 20

MetabolizeProb 0.35 0.4 0.3 0.02

SoluteBindingProb 0.35 0.5 0.6 0.35

SoluteBindingCycle 25 25 25 20

SM Values 0.92 0.81 0.91 0.97

Physicochemical properties MW 266.3 188.2 328.4 414.5

logPc
app 0.14 0.33 2.69 3.53

fraction unboundc 0.74 0.60 0.52 0.28

pKc
a 9.60 1.45 7.40 7.70

Values are listed for the DRUG-specific ISL parameters used to generate the outflow profiles in Figs. 4 and 5. The Similarity Measure (SM)
values for those profiles are listed along with the physicochemical properties of the four drugs.
a ISL2WetLabScaling for SUCROSE that was coadministered with all four DRUG.
b B2AJumpProb for SUCROSE that was coadministered with DILTIAZEM was 0.75 to compensate the difference between ISL2WetLabScaling
values.

c From (5)
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B2CJumpProb parameter values 0.05 and 0.95. Decreasing
B2CJumpProb from 0.5 (the value for LABETALOL in Fig. 4C)
to 0.05 caused the Area Ratio to increase to 1.5; increasing
C2BJumpProb from LABETALOL’S value of 0.5 to 0.95 caused
the Area Ratio to decrease to 0.83. These results were
consistent with the ISL’s design and hepatic histology.
Increasing B2CJumpProb or decreasing C2BJumpProb in-
creased the amount of COMPOUND in Grid C, which enabled
increased METABOLISM while slowing the return of COMPOUNDS

to Grid A and the Core (and thus arrival at CV). The leading
edge and the peak of the outflow profile were much more
sensitive to changes in A2BJumpProb and B2AJumpProb
than to changes in B2CJumpProb and C2BJumpProb.

A second set of experiments explored the consequences of
changing the parameter values of two CELLULAR components:
SoluteBindingProb and MetabolizeProb. We again used eight
parameter values between 0.05 and 1.0. The consequences of
changing SoluteBindingProb influenced the peak (but only
slightly), the shape, and the tail end of the outflow profile. The
results in Fig. 6C are for values of 0.05 and 0.999 (for
LABETALOL in Fig. 4C it was 0.6). Increasing SoluteBinding-

Prob decreased the peak, lowered the tail end of outflow
profile, and increased METABOLISM: Area Ratio=0.8. Because
of the increased probability of binding in Grids B and C, fewer
of the COMPOUNDS that reached Grids B and C could return
quickly to Grid A and the Core. Consequently, post-peak
values were lower. Increasing binding probability in Grids B
and C increased the residence time in those spaces, increasing
METABOLISM. Decreasing SoluteBindingProb to 0.05 had the
opposite effects: peak height increased, profile shape changed,
and the tail end of the profile was raised: Area Ratio=2.2.

Eight MetabolizeProb parameter values were studied.
The consequences of change (Fig. 6D) were essentially the
same as changing B2CJumpProb. When the value was
increased to 0.95 (from 0.3 for LABETALOL in Fig. 4C), the
tail end of the outflow profile was lowered and METABOLISM

increased: Area Ratio=0.88. Because the change only influ-
enced COMPOUNDS that had already reached Grid C and were
within the HEPATOCYTES, the outflow profile’s peak was not
significantly influenced. When MetabolizeProb decreased to
0.05, the consequences were opposite those just described:
Area Ratio=1.3.

Fig. 4. Semilog and scatter plots of acceptable outflow profile matches for the four drugs. A ATENOLOL, B ANTIPYRINE, C LABETALOL, and D
DILTIAZEM were co-administrated with SUCROSE. Plots show the fraction of dose per outflow unit (per ml for the referent) as a function of time
(1 unit=1 second) after dosing with equal amounts of SUCROSE and DRUG. The gray band spans the range for the mean±one standard deviation
as specified in the text. Open circles Wet-lab outflow values for each drug. Dark gray circles DRUG outflow values using the tuned parameter
sets in Tables I and II. Each ISL datum is the smoothed (window size, three values) mean value of 48 independent ISL runs (all stochastic
parameter values are changed prior to each run). Although each independent run uses the same LOBULE graph and SSs, their arrangements are
randomized prior to each run; consequently, the actual structure of the LOBULE is different for each simulation. Gray band for LABETALOL ends
at t=70 because the in situ experiment ended after 70 s. SM values: ATENOLOL, 0.92; ANTIPYRINE, 0.81; LABETALOL, 0.91; and DILTIAZEM, 0.97.
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Visualization of Simulation Details

Because of the design and discretized features of the
ISL, the details of events as COMPOUNDS trek through
various SS can be easily visualized for experimental, veri-
fication, and/or validation purposes. An interactive movie of
SUCROSE and ATENOLOL moving separately through the ISL
following a single combined dose is provided within Supple-
mentary Material ESM.

DISCUSSION

ISLs and Traditional Models

The stated objective of this work was to instantiate a
physiologically and mechanistically realistic software device,
which could be used and reused to simulate hepatic outflow
profiles of any of five compounds, alone or in combination,
and study plausible, detailed, generative mechanisms. The
results (Figs. 4, 5 and 6) provide the validation evidence that
the objective has been achieved. The physiological and
mechanistic realism of the ISL derives in part from compo-
nent design and connectivity, and from how mobile compo-
nents—representing drugs of interest—interact with spatially
fixed components. Static and dynamic relationships within the
ISL, although currently abstract and low resolution, are
intended to map to corresponding relationships within a liver

during perfusion. In that sense, the ISL is physiologically and
mechanistically realistic, although it uses parameters and
values different from traditional, continuous, physiologically-
based models.

It should be emphasized that Hung et al. (5) used a two-
phase stochastic, PBPK model and nonlinear regression to fit
the referent data in Figs. 4 and 5. The authors state, “this
model perfectly fitted the data from the peak to the tail.” ISL
outflow profiles have provided a description of the original
experimental data that is inferior to that obtained by the
parsimonious nonlinear regression approach. However, it is
evident that ISL simulations, as previously detailed (2), are
better placed to meet the constructive goal of describing the
causes of PK phenomena, predicting how detailed changes
in the system affect those phenomena, and that ISL
simulations yield profiles that are fairly similar to those
obtained by regression.

The amount of detail included in this version of the ISL
is purposefully just enough to represent the outflow profiles
of the four drugs and sucrose. For example, the current
coarse-grained movement of COMPOUND is modeled differ-
ently within and between grids than within CELLS, and can
be refined differently for each space when that is needed.
For example, we could replace the two probabilities for
jumping between Grids A and B with specific details. No
transporters were specifically represented, even though we
know several varieties exist. They, along with other cellular

Fig. 5. Semilog plots of outflow data for SUCROSE when co-administrated with each DRUG in Fig. 4. Open circles Mean wet-lab outflow values
for sucrose. The gray band represents the mean±one standard deviation for the referent wet-lab sucrose data. The gray curve is the DRUG trend
line from Fig. 4.
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material, have been conflated into the abstract binder objects.
We can implement a spatially detailed CELL MEMBRANE, as
done in (17), and imbue it with transporter objects, as done in
(18). A random walk mechanism for DRUG transport was
adequate to simulate the referent disposition behaviors. More
complicated transport phenomena can be added, without
compromising the functionality already present when model
use requires doing so.

It is too early to make claims about the relative predictive
strengths of the ISL class and classical PBPK models. For that,
the ISL will need to be challenged to make predictions for new
drugs or make predictions of disposition events from experi-
ments that use experimental designs different from that used for
validation. Nevertheless, it is important to note that the ISL has
been carefully designed specifically to meet such challenges. It
has been designed to exhibit ten capabilities (see Supplementary
Material) and the results demonstrate that the ISL exhibits nine
of the ten. The following are the five that are most relevant to
future use of ISLs for prediction.

– It must be easy to reconfigure an ISL to represent dif-
ferent histological, physiological, or experimental
conditions.

– In order to represent the particular specifics of different
experiments, it must be relatively simple to change ISL

usage and assumptions, or increase or decrease detail,
without requiring significant re-engineering.

– To facilitate the two preceding capabilities, it must be
easy to join, disconnect, and replace ISL compo-
nents: ISL components articulate. It must be straight-
forward to separately validate components. This
capability was also demonstrated in (17) and (18).

– The ISL must be usable for simulating the disposition,
clearance, and metabolic properties of a wide variety
of compounds, separately or in the same experiment.

– It must be easy to use a validated ISL as an organ
component within a larger, synthetic, physiologically
based, whole organismmodel (not yet demonstrated).

All computational models designed to exhibit the same
behavior are effectively identical. However, different models
often have different goals, which manifest in differences
between components, their organization, and their implemen-
tation. For instance, the classical, inductive PBPK models
exemplified in (3–8) make parsimony paramount in order to
insure identifiably and minimize parameter uncertainty. Such
models seek to faithfully describe the time course of PK data
in terms of physiological events occurring globally within the
liver. Both an advantage and a limitation is that, as a top
down approach providing that global view of events, they

Fig. 6. Semilog plots demonstrating the consequences of changing four parameter values. In each graph, the continuous gray curve is the trend
line for the LABETALOL data in Fig. 4C, and it provides reference to which the experimental values should be compared. Experiments: LABETALOL

and SUCROSE were administered as for Fig. 4C; however, one parameter value (indicated) was either increased or decreased relative to the
control value for LABETALOL (shown). Only LABETALOL data are shown because these parameter values are DRUG-specific and do not influence the
behavior of co-administered SUCROSE. The parameter values changed determine the probability of one of four events occurring within any one
simulation cycle: A jumping from Grid A to B (parameter: A2BJumpProb); B jumping from Grid B to C (parameter: B2CJumpProb); C being
bound by a binder (parameter: SoluteBindingProb); and D being metabolized when bound (parameter: MetabolizeProb).
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must ignore intricacies and system heterogeneity. Hence,
classical PK models are the best option for precisely
describing the global behavior of the system using a
mathematically minimal representation. In contrast, the ISL
works locally, middle-out, in providing a description of the
articulation of hepatic components. For the task of represent-
ing PK data appropriately using minimalist models, the ISL
and their ilk will be inferior to classical PBPK models.

The ISL’s real power is experimental exploration of what
biochemical, morphological, and physiological alterations in
subcellular and local mechanisms may have on PK phenom-
ena. In (2) we demonstrated the consequences of simulated
lobular morphological and physiological changes. The out-
flow profile changes in Fig. 6 show results from event changes
within each SS. The different profiles could represent the
consequence of disposition of the same drug in a different
liver in which changes in subcellular and local mechanisms
are caused by biochemical, morphological, and physiological
alterations. Alternatively, the different profiles could be
caused by changes in subcellular and local mechanistic details
that are a consequence of dosing with a different drug. In the
latter case, the specific ISL parameter change, the probability
of jumping from Grid B to Grid C, for example, may be
traceable to differences in a specific subset of PCPs. Hence, if
the goal is to predict altered PK caused by altered patho-
physiology or a change in drug structure, or to discover why
liver disease leads to a particular PK phenomena rather than
another, then the ISL class is likely to be among the best
options. Further, if the researcher intends to also use a model
to explore the PK consequences of specific mechanistic
changes that may result, for example, from disease or co-
administered drugs, then models of the ISL class are expected
to have advantages. However, at this time, the ISL class has
not been used for such purposes and so we must await the
supporting evidence. The discussions of comparisons of
inductive PBPK models and synthetic models of the ISL class
in (2) (including Supplementary Material) and (9,10,19,20)
address other ways that the ISL class differs from traditional
PBPK models.

Disposition Mechanisms

Features of hepatic architecture at several levels of detail
are encountered by all xenobiotics traveling through the liver.
Our approach (Figs. 1 and 2) has been to represent some of
those common features within Sinusoidal Segments. Probabi-
listic parameters control how each spatially fixed component
interacts with mobile objects representing drugs, and these
interactions can be tailored to the PCPs of different
compounds. Fixed ISL components “read” PCP information
carried by each COMPOUND before initiating an interaction.
Consequently, several different DRUGS can be present during
the same simulation. SUCROSE plus the four DRUGS can be
administered together and the outflow profile of each will be
experimentally indistinguishable from referent profiles.

The mechanisms within the ISL are relevant for other
drug classes because the rules governing interaction between
a mobile object and a fixed component can range from nil to
extreme. Sheihk-Bahaei et al. (18) have provided an example
of applying exactly the same methods to two very different
compounds: salicylate and enkephalin; in (11) the study was

extended to include taurocholate and methotrexate. They
tuned in silico hepatocytes to simulate the uptake and biliary
clearance of those four compounds in sandwich-cultured
hepatocytes. Metabolic enzymes and transporters are specif-
ically represented. It is at this level of detail that CYP enzyme
and transporter polymorphisms could be represented within
an ISL, where separate enzyme and/or ISL versions simulate
a specific polymorph.

With additional ISL validations comes the opportunity to
anticipate or predict ISL parameter values for a new
compound, based on its PCPs. There is a mapping between
the space of ISL parameterizations and the space of
compounds’ PCPs. The expectation is that as the number of
satisfactorily validated COMPOUNDS increases, identifiable
patterns will emerge in these mappings. In that situation,
the ISL can be given methods to exploit and use posited
mappings to anticipate a reasonable set of parameter values
for a new, previously unseen DRUG, given only its PCPs. An
example of how this can be done was recently presented (11).

The conceptual separation of hepatic form and function
and their subsequent instantiation within the ISL has been
somewhat arbitrary. For example, extracellular access to Grid
C is regulated by the density of FENESTRATIONS within Grid B
combined with the probability of jumping to Grid C when a
FENESTRATION is encountered. A set of different FENESTRATION

densities and transition probabilities values may give the
same Grid C access for a given COMPOUND. This example
illustrates that different interactions between LOBULE structural
components and mobile COMPOUNDS of the same type can
similarly impact disposition within the ISL. Sets similar to the
preceding example exist for each probabilistic parameter
influenced by PCPs. Importantly, the size of these sets shrinks
when the same ISL is also validated sequentially against data
for a second compound. It shrinks further for each additional,
successful validation.

Tuning and Refining ISLs

The iterative model refinement method is the heart of
exploratory modeling. When faced with the task of building a
scientifically relevant model in the face of significant gaps in
the body of knowledge used to guide the modeling, param-
eterizations and model components must strike a flexible
balance between too many and too few. Too many can imply
redundancy or a lack of generality; too few can make the
model useless for practical research. With the ISL, we have
attempted to create a minimal model, both abstract enough to
be meaningful and concrete enough to provide a foundation
from which future ISL descendents can develop. As the ISL
evolves, we expect to refine the above, compensatory
parameter sets such that they guide further experimentation
on the model and the referent. For current use, the ISL is
striking that balance between too many and too few
components and parameters.

The structural and microarchitectural details for each
simulation are nondeterministic. Graph structure has a major
influence on ISL outflow profiles (2). Even though the
number of nodes per zone and the number of intra- and
interzone edges are specified, the connectivity pattern is
determined randomly at the start of each simulation. SS
structures for a given set of parameter values are also
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stochastic: the actual structures of the 72 SSs used for each
ISL run in Figs. 4 and 5 are highly constrained yet typically
different, and their properties can form clusters as a
consequence of the discretization within an ISL. Because of
the many forms of discretization, there is variability between
ISL instantiations and that causes outflow profiles to be
somewhat different. That variability reflects, and to some
extent simulates, some of the uncertainty in our knowledge
about the exact details of the generative mechanisms and wet-
lab experiments from which the data were collected.

Each 48-trial experiment models a single rat liver. Two
experiments using the same parameter vector are unlikely to
vary enough to represent two different individuals. Instead,
they effectively simulate repeat experiments on a single liver
where, unlike with the referent livers, hepatic function is not
modified by a previous experiment. To effectively simulate
interindividual variances, some modification of the parameter
vector is needed. For variance in liver size and blood flow, we
can modify CoreFlowRate, the number of SSs, the geometry
of the SSs, and SinusoidTurbo. HEPATOCYTE and ENDOTHELIAL

CELL density, binder, and METABOLISM parameters can be
changed to vary the overall amount of HEPATIC function and
that can simulate interindividual differences in age, damage
to the liver, or previous exposure to compounds that induce
enzymes. Various types of liver damage can also be simulated
by changing the ratio between the two types of SS or by
making the SSs more or less constricted and tortuous. The
connectivity of the SS graph can also be changed to increase
or decrease intra-LOBULE mixing, or increase or decrease the
range of possible path lengths.

We do not measure or record frequencies of path
“lengths” or path properties encountered by COMPOUNDS as
they move from PV to CV. If we could obtain such data
during liver perfusions, we might expect a smooth and
asymmetric distribution ranging from short to long treks (6).
In the ISL, if the treks taken by COMPOUNDS form clusters,
then the outflow profile will provide evidence that heterogeneity
by exhibiting post-peak bumps in the outflow profile like those
seen in Fig. 6. Such patterns are a natural consequence of
how we discretized the ISL. For example, decreasing the
probability of moving from Grid A to B (Fig. 6A) reduces
COMPOUND resident time within Grids B and C. The bumpy
tail of the outflow profile reflects primarily that, when
COMPOUNDS are confined more to Grid A and the Core, the
available path options from PV to CV are reduced, and the
frequency distribution of paths taken becomes less smooth
(data not shown). Having more options smoothes the curve;
decreasing the probability of moving from Grid A to B reduces
options. Similarly, setting the probability of moving from Grid
B to C (Fig. 6B) to a high value increases the fraction of
resident time spent by COMPOUNDS within Grid C. The
lowered, bumpy tail is a consequence of reduced path
options: the frequency distribution of paths taken from PV
to CV became somewhat clustered because options were
reduced.

The experimental outflow profiles in Fig. 6B and D show
that two different mechanistic changes can cause similarly
altered outflow profiles. Consequently, differences between
two outflow profiles, as discussed above, can have multiple,
equally valid, detailed explanations. We speculate that the
same is true in situ and in vivo.

In “MATERIALS AND METHODS”, we stated that
BINDERS are INTRACELLULAR components that collectively rep-
resent transporters, enzymes, organelles, and other cellular
components that bind or sequester drug molecules. DILTIAZEM

“sees” more BINDERS than do the other three DRUGS. As
mentioned in RESULTS, the probability of a bound DILTIAZEM

being METABOLIZED within a simulation cycle is very small:
0.02. That value may initially seem inconsistent with reports
that diltiazem has a large, relative, intrinsic hepatic clearance.
However, by positing that a large portion of DILTIAZEM binding
within the ISL maps to intracellular ion-trapping and
microsomal binding, we see that the ISL mechanisms and
event parameterizations for DILTIAZEM, although less specific
and more abstract, are completely consistent with mechanis-
tic ideas that motivated traditional PK models (5,8). We could
replace BINDERS with two (or more) new INTRACELLULAR ob-
ject classes, one representing intracellular ion-trapping and
microsomal binding, and another representing drug metabo-
lism. However, because current model use did not require
that detail, we elected not to do so.

Designed ISL Capabilities

We have demonstrated and validated an ISL that
provides new methods for achieving the PBPK vision. It
proved essential that the ISL have the ten capabilities listed in
Supplementary Material ESM. ISL observables have been
designed to be consistent with in situ observables. This design
has enabled clear mappings between in vitro and in silico
components and mechanisms that can be harnessed for
prediction. As in situ, the ISL behaviors that have emerged
during simulated perfusion experiments are the consequences
of local mechanisms: local component interactions. Simula-
tion details as they unfold are visualizable, measurable, and
comparable to those of in situ perfused livers (see Supple-
mentary Material). The ISL has been designed and con-
structed so that it can become the liver component in a larger,
whole organism model. To enable that adaptability and use
the same ISL for several different compounds, we found it
essential that components be autonomous and easily recon-
figured. By making components and system dynamics dis-
crete, it was relatively simple to increase or decrease detail as
needed to simulate outflow profiles of additional COMPOUNDS,
without requiring significant ISL reengineering. Because
identical PK profiles can be a consequence of different
mechanisms, we have made it easy to join, disconnect, and
replace ISL components to explore alternate explanations.
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